2015


Skin Concentrations of Topically Applied Substances in Reconstructed Human Epidermis (RHE) compared with Human Skin Using in vivo Confocal Raman Microscopy, Franziska D Fleischli, Fabienne Morf, and Christian Adlhart, Chimia 69, 147–151, 2015.

Imaging Wavelength and Light Penetration Depth for Water Content Distribution Measurement of Skin, H Arimoto, M Egawa, Skin Research and Technology 21, 94–100, 2015.

Immediate and Extended Effects of Abrasion on Stratum Corneum Natural Moisturizing Factor, DR Hoffman, L M Kroll, A Basehoar, B Reece, CT Cunningham and D W Koenig, Skin Research and Technology 0, 1–7, 2015.

In Vivo Raman Spectroscopy of Skin, PDA Pudney, Spectroscopy Europe 27, 2, 2015.

2014


In Vivo Evaluation of Two Forms of Urea in the Skin by Raman Spectroscopy After Application of Urea-Containing Cream,
M Egawa and Y Sato,
Skin Research and Technology 0, 1–6, 2014.

Age-Dependent Changes in Stratum Corneum Barrier Function,
E Boireau-Adamezyk, A Baillet-Guffroy and GN Stamatas,
Skin Research and Technology 20, 409–415, 2014.

In Vitro–In Vivo Correlation in Skin Permeation,
D Mohammed, PJ Matts, J Hadgraft, ME Lane,

Gaussian-Function-Based Deconvolution Method to Determine the Penetration Ability of Petrolatum Oil Into in Vivo Human Skin Using Confocal Raman Microscopy,
C-S Choe, J Lademann, ME Darvin,
Laser Physics 24, 10, Art Nr 105601.

2013

A New Paradigm in Dermatopharmacokinetics – Confocal Raman Spectroscopy,
R Mateus, H Abdalghafor, G Oliveira, J Hadgraft, ME Lane,

Influence of Niacinamide Containing Formulations on the Molecular and Biophysical Properties of the Stratum Corneum,
D Mohammed, JM Crowther, PJ Matts, J Hadgraft, ME Lane,

Improved Modeling of In Vivo Confocal Raman Data Using Multivariate Curve Resolution (MCR) Augmentation of Ordinary Least Squares Models,
TM Hancewicz, C Xiao, S Zhang, M Misra,

Improvement of Skin Barrier Function in Atopic Dermatitis Patients With a New Moisturizer Containing a Ceramide Precursor,
Eric Simpson, Arne Böhling, Stephan Bielfeldt, Catherine Bosc, Nabil Kerrouche,

2012

A Consensus Modeling Approach for the Determination of Stratum Corneum Thickness Using In-Vivo Confocal Raman Spectroscopy,
TM Hancewicz, C Xiao, J Weissman, V Foy, S Zhang, M Misra,


Impact of filaggrin mutations on Raman spectra and biophysical properties of the stratum corneum in mild to moderate atopic dermatitis, V Mlitz, J Latreille, S Gardinier, R Jdid, Y Drouault, P Hufnagl, L Eckhart, C Guinot, E Tschachler. JEADV 2012, 26, 983–990.

In vivo skin treatment with tissue-tolerable plasma influences skin physiology and antioxidant profile in human stratum corneum,
Experimental Dermatology, 21, 130–134.

In vivo Monitoring of epidermal absorption of hazardous substances by confocal Raman micro-spectroscopy,
H. C. Broding, A. van der Pol, J. de Sterke, C. Monsé, M. Fartasch, T. Brüning

2010

The Evaluation of the Amount of Cis- and Trans-Urocanic Acid in the Stratum Corneum by Raman Spectroscopy,
M. Egawa, J. Nomura, H. Iwaki,

In Vivo Characterization of the Structure and Components of Lesional Psoriatic Skin From the Observation with Raman Spectroscopy and Optical Coherence Tomography: A Pilot Study,
M. Egawa, N. Kunizawa, T. Hirao, T. Yamamoto, K. Sakamoto, T. Terui, H. Tagami,

Raman Profiles of the Stratum Corneum Define 3 Filaggrin Genotype-Determined Atopic Dermatitis Endophenotypes,

In Vivo Measurements of the Water Content in the Dermis by Confocal Raman Spectroscopy,
N. Nakagawa, M. Matsumoto, S. Sakai,
Skin Res. and Techn. 16, 137-141, 2010.

Development and Clinical Analysis of a Novel Humectant System of Glycerol, Hydroxyethylurea, and Glycerol Quat.
N. Lu, P. Chandar, G. Nole, B. Dobkowski, A.W. Johnson,

2009

Changes in the Depth Profile of Water in the Stratum Corneum Treated With Water,
M. Egawa, T. Kajikawa,
Studying the Effectiveness of Penetration Enhancers to Deliver Retinol Through the Stratum Corneum by In-Vivo Confocal Raman Spectroscopy,

In Vivo Distribution of Carotenoids in Different Anatomical Locations of Human Skin: Comparative Assessment with Two Different Raman Spectroscopy Methods,

In Vivo Raman Spectroscopy Detects Increased Epidermal Antioxidative Potential with Topically Applied Carotenoids,

Depth Profiling of Stratum Corneum Hydration In Vivo: A Comparison Between Conductance and Confocal Raman Spectroscopic Measurements,
M. Boncheva, J. de Sterke, P.J. Caspers and G.J. Puppels,

Assessment of Human Stratum Corneum Thickness and its Barrier Properties by In-Vivo Confocal Raman Spectroscopy,
S. Bielfeldt, V. Schoder, U. Ely, A. van der Pol, J. de Sterke and K.-P. Wilhelm,
IFSCC Magazine 12, 1, 2009.

Confocal Raman Spectroscopy for In Vivo Skin Hydration,
A. van der Pol and P.J. Caspers.

Measuring the Effects of Topical Moisturisers on Changes in Stratum Corneum Thickness, Water Gradients, and Hydration In-Vivo,

Comparison of the Depth Profiles of Water and Water-binding Substances in the Stratum Corneum Determined In Vivo by Raman Spectroscopy Between the Cheek and Volar Forearm Skin: Effects of Age, Seasonal Changes and Artificial Forced Hydration,
M. Egawa and H. Tagami,
In Vivo Evaluation of the Protective Capacity of Sunscreen by Monitoring Urocanic Acid Isomer in the Stratum Corneum Using Raman Spectroscopy,
M. Egawa and H. Iwaki,

Loss-of-function Mutations in the Filaggrin Gene Lead to Reduced Level of Natural Moisturizing Factor in the Stratum Corneum,

In Vivo Raman Confocal Microspectroscopy of Skin,

Lipid Uptake and Skin Occlusion Following Topical Application of Oils on Adult and Infant Skin,
G.N. Stamatas, J. de Sterke, M. Hauser, O. von Stetten and A. van der Pol,

Barrier Function and Water-Holding and Transport Properties of Infant Stratum Corneum Are Different from Adult and Continue to Develop Through the First Year of Life,
J. Nikolovski, G.N. Stamatas, N. Kollias and B.C. Wiegand,

Confocal Raman Microspectroscopy of Stratum Corneum: a Pre-clinical Validation Study,
J. Wu and T.G. Polefka,

In Vivo Estimation of Stratum Corneum Thickness from Water Concentration Profiles Obtained with Raman Spectroscopy,
M. Egawa, T. Hirao and M. Takahashi,

Assessment of the “Skin Reservoir” of Urea by Confocal Raman Microspectroscopy and Reverse Iontophoresis In Vivo,
V. Wascotte, P.J. Caspers, J. de Sterke, M. Jadoul, R.H. Guy and V. Preat,

An In Vivo Confocal Raman Study of the Delivery of Trans-retinol to the Skin,
P. Pudney, M. Mélot, P.J. Caspers, A. van der Pol and G.J. Puppels,
Confocal Raman Microspectroscopy – Measuring the Effects of Topical Moisturizers on Stratum Corneum Water Gradient In Vivo,

Combined In Vivo Confocal Raman Spectroscopy and Confocal Microscopy of Human Skin,
P.J. Caspers, G.W. Lucassen and G.J. Puppels,

In Vivo Skin Characterization by Confocal Raman Microspectroscopy,
P.J. Caspers,

Monitoring the Penetration Enhancer Dimethyl Sulfoxide in Human Stratum Corneum by In Vivo Confocal Raman Spectroscopy,

In Vivo Confocal Raman Microspectroscopy of the Skin: Noninvasive Determination of Molecular Concentration Profiles,
P.J. Caspers, G.W. Lucassen, E.A. Carter, H.A. Bruining and G.J. Puppels,

Automated Depth-scanning Confocal Raman Microspectrometer for Rapid In Vivo Determination of Water Concentration Profiles in Human Skin,
P.J. Caspers, G.W. Lucassen, H.A. Bruining and G.J. Puppels,

In Vitro and In Vivo Raman Spectroscopy of Human Skin,
P.J. Caspers, G.W. Lucassen, R. Wolthuis, H.A. Bruining and G.J. Puppels,